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Abstract 
 
The root mean square perturbations on particles produced by vacuum radiation must be 
limited by the uncertainty principle, i.e., >p<  >x< 1/22

x
1/22 δδ  = 2 / h , where 

>x< 1/22δ  and >p< 1/22
xδ  are the root mean square values of drift in spatial and 

momentum coordinates.  The value >x< 1/22δ  = )/m t ( 1/2h , where m is the mass of 
the particle, can be obtained both from classical SED calculation and the stochastic 
interpretation of quantum mechanics.  Substituting the latter result into the uncertainty 
principle yields a fractional change in momentum coordinate, p / >p< 1/22

xδ , where p is 
the total momentum, equal to )/Et (  2 1/2-3/2 h , where E is the kinetic energy.  It is shown 
that when an initial change >p< 1/22

xδ  is amplified by the lever arm of a molecular 
interaction, p / >p< 1/22

xδ  > 1 in only a few collision times.  Therefore the momentum 
distribution of a collection of interacting particles is randomized in that time, and the action 
of vacuum radiation on matter can account for entropy increase in thermodynamic systems. 
  The interaction of vacuum radiation with matter is time-reversible.  Therefore  
whether entropy increase in thermodynamic systems is ultimately associated with an arrow  
of time depends on whether vacuum photons are created in a time-reversible or irreversible  
process.  Either scenario appears to be consistent with quantum mechanics. 
 
 
1. Introduction 
 
In this paper we will see that entropy increase in thermodynamic systems can be accounted 
for by vacuum radiation, and then discuss the relationship between vacuum radiation and 
the arrow of time. 
 The problem in accounting for entropy increase has always been that dynamical 
interactions which occur at the molecular level are time-reversible, but thermodynamic 
processes associated with entropy increase, such as diffusion and heat flow, only proceed in 
one direction as time increases.  In the past it was often held that entropy increase is only a 
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macroscopic phenomenon, which somehow appears when a coarse-grain average is taken 
of microscopic processes.  But no averaging of time-reversible processes has ever been 
shown to account for phenomena which are not time-reversible.[1] 
 Nowadays entropy increase is often viewed as coming from effects of the 
environment, such as walls of a container or thermal radiation, not taken into account in the 
description of a system.  Unruh and Zurek [2] have given examples in which entropy 
increase is produced in this way. 
 However, the second law of thermodynamics specifies that entropy increase must 
also occur in an isolated system.  So if we are to hold that entropy increase is produced by a 
physical process at the microscopic level, we must also understand how it can be produced 
in this way in an isolated system. 
 Any explanation must satisfy the basic assumptions of statistical mechanics.  
Classical statistical mechanics has only one assumption:  
 
  At equilibrium it is equally probable that the system will be in any (classical) 

state which satisfies the thermodynamic constraints. 
 
Quantum statistical mechanics has two basic assumptions.  The first is essentially the same 
as for classical, except that states are now counted quantum mechanically.  Thus: 
 
  At equilibrium it is equally probable that the system will be in any (quantum) 

state which satisfies the thermodynamic constraints. 
 
The second assumption of quantum statistical mechanics is: 
 
  At equilibrium the relative phases of the eigenvectors describing the system 

are random. 
 
 Once these fundamental assumptions are made, one can then define entropy as 
klog(number of states), where k is Boltzmann's constant.  It is always also assumed that the 
number of molecules, and therefore the number of states, is extremely large.  One can then 
develop the physics of the microcanonical ensemble in the usual way, by requiring that 
different parts of an isolated system be in equilibrium with each other at temperature T.  By 
placing the system in equilibrium with a heat bath one can then derive the physics of the 
canonical ensemble, and so forth.[3] 
 In order to talk about entropy, we must specify the context in which we refer to the 
ensemble of all possible states.  In the coarse-grain view we would use an ensemble of 
states with all possible initial conditions, and then argue that because the number of states is 
very large, the only states we are apt to see are the most probable ones (and not ones in 
which all molecules are clustered in a corner of a box, for instance).  Thus equilibrium 
merely refers to the most probable state in a large collection of systems.  In the view in 
which entropy is produced at the microscopic level, we start with a single system which has 
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specified initial conditions (classical or quantum mechanical) and look for a process which 
produces many random perturbations and by this means places the individual system into 
its most probable state. 
 In order to inquire about an isolated system, let us consider the system to be 
comprised of not only the interacting molecules under consideration, but also the walls of 
their container, any heat bath surrounding them, and all the thermal radiation which might 
affect them.  It would seem that we have taken into account all interactions which could 
possibly affect the system.  What then could serve as an "environment" which would 
account for entropy increase? 
 Let us ask if an interaction could take place within the limits of the uncertainty 
principle which would affect molecules randomly?  If this interaction could randomize the 
momentum of each molecule and (when quantum mechanical description is needed) 
randomize the quantum phases of the eigenvectors describing the system, this process 
would then account for entropy increase.  Yet the interaction itself could not be detected in 
measurements of the system. 
 Vacuum radiation acts at the limits of the uncertainty principle, and clearly it would 
perturb molecules in a random way.  But are these effects large enough?  A thermodynamic 
system goes to equilibrium in a few molecular collision times.[3]  So in order to account for 
entropy increase, vacuum radiation would have to randomize the momentum of a system 
and the quantum phases of its eigenvectors in that short time.  Let us first take up the 
question of momentum. 
 
 
2. Randomization Of Momentum By Vacuum Radiation 
 
2.1.  DRIFT IN SPATIAL COORDINATE 
 
It has been shown by Rueda [4] in a classical stochastic electrodynamics (SED) calculation 
that the coordinate drift produced on a free particle by vacuum radiation can be described 
by diffusion constant D = /2m h , where m is the mass of the particle.  A quantum 
mechanical calculation of this effect of vacuum radiation has not been done.  However, 
when only energy and momentum transfer are involved and not anything specifically 
quantum about the nature of the radiation involved, it is reasonable that an SED calculation 
will give the same result as a quantum mechanical one.[5,6] 
 Rueda showed that vacuum radiation moves electrons in a random walk at 
relativistic speeds and that this motion accounts for nearly all of their mass, with step length 
varying from the Compton wavelength to the de Broglie wavelength.  The radiation acts on 
hadrons at the quark level and moves the hadrons at sub-relativistic velocity.[4] 
 We note that the stochastic interpretation [7] of the Schrödinger equation, which has 
no direct connection to vacuum radiation, but attributes a quantum brownian motion to 
particles, yields the same diffusion constant.  In a similar vein, the stochastic action of 
particles, with the same range of step lengths as above, can be derived directly from the 
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uncertainty principle in the following way.  Suppose that we have an ensemble of particles, 
labeled 1, 2, ....  Each is subject to a series of position measurements at equal time intervals.  
Particle 1 is measured with resolution x1∆ , particle 2 with resolution x2∆ , and so forth, 
with x1∆  > x2∆  > ....  According to the uncertainty principle, as measurement resolution 
becomes increasingly fine, particle momentum is increasingly more uncertain, and the path 
is more erratic.  Using this point of view, a particle can be described as following a 
continuous, non-differentiable path of fractal dimension two, which corresponds to 
brownian motion.[8]  Further analysis shows that the step lengths vary from the Compton 
wavelength to the de Broglie wavelength.[9] 
 The above diffusion constant yields a root mean square spatial drift >x< 1/22δ  = 

)(2Dt 1/2  [10], so 

 

 The above result can be confirmed experimentally using a tightly collimated beam 
of low energy electrons.  For instance, if a beam of 100 ev electrons has vy/vx = 10-5 (where 
x is the forward direction of travel), the spread in beam width due to the above process will 
be larger than the spread due to diffraction in the first 19.5 cm of travel.[11]  This 
experiment has not presently been done, however. 
 
2.2.  RANDOMIZATION OF MOMENTUM 
 
Vacuum radiation acts at the limits of the uncertainty principle, so we write 

>p<  >x< 1/22
x

1/22 δδ  = 2 / h , where >p< 1/2 2
xδ  is the root mean square shift in 

momentum component of the particle produced by vacuum radiation.  It is then easily 
found that 

 

where p is the total momentum of the particle and E = p2/2m is the energy.  We see that 
>p< 1/22

xδ  is proportional to t-1/2 , so momentum is conserved as time becomes large. 
 Perturbations in momentum of a particle will change its original value, and when 

p / >p< 1/22
xδ  > 1, momentum has been completely randomized.  We wish to know 

how long this will take.  In order to have a concrete example, let us start with air at standard 
conditions.  At the end of one collision time (i.e., the time to travel a mean free path), 

p / >p< 1/22
xδ  = 1.186 x 10-3.[11]  However, any change in momentum is multiplied by 

a lever arm A = /rλ , where λ  is the mean free path and r the molecular radius, during the 
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next collision.[11]  In air at standard conditions A = 1.005 x 104.[11]  Therefore, the 
momentum distribution of the molecules has been randomized in two collision times. 
 The product A p / >p< 1/22

xδ  is proportional to )P( / ) (kT 1/21/4 σ .[11]  
Therefore, momentum is randomized in a few collision times for all gases except those at 
very high pressures (> 100 atm, or higher if the temperature is substantially more than 
300 K).  In solids and liquids many particles interact simultaneously, so it is reasonable to 
suppose that momentum will randomize within a few collision times in these also.[11] 
 
 
3.   Randomization Of  The Phases Of  The Eigenvectors 
 
In order to fulfill the second fundamental assumption of quantum statistical mechanics, it is 
necessary to show that vacuum radiation can randomize the relative phases of the 
eigenvectors describing the system within a few collision times.  We make no calculation 
here, but simply show that this is likely to be the case. 
 First, we note that perturbation theory tells us that components of eigenvectors 
added to a system because of a perturbation are out of phase with the original state 
vector.[12]  Furthermore, because vacuum radiation will produce many small, independent 
effects, we can see by considering either a coordinate or a momentum representation of the 
eigenvectors that these effects would affect different eigenvectors differently.  So we would 
expect the relative phases of the eigenvectors to be randomized. 
 The above does not tell us how quickly this randomization would occur.  However, 
Unruh and Zurek [2] have shown in various examples that when an environment perturbs a 
system, the off-diagonal elements of the density matrix go to zero in a much shorter time 
scale than effects involving spatial and momentum distributions.  Thus it seems likely that 
vacuum radiation can diagonalize the density matrix in a shorter time than it takes to 
randomize momentum. 
 
 
4.  The Arrow Of Time  
 
The dynamical laws of physics are time reversible, i.e., for any given trajectory described 
by them, the time reversed trajectory is also a solution of the equations.  And in nearly all 
cases, both the process described by these equations as time moves forward and the process 
described when time is reversed can be observed to occur.  But curiously, there are a few 
exceptions to this rule.  The decay of K-mesons violates CP and therefore (assuming CPT 
holds) is not time symmetric.  Electromagnetic waves emanate from a source out to infinity, 
but do not converge from infinity to a source.  Collapse of the wave function is a one-way 
process.[13,14]  And as Prigogine and co-workers have shown, in systems which are so 
unstable that they cannot be described analytically in an ordinary dynamical framework, 
process can go in only one direction.[15]  Such processes can be called irreversible, and 
they are accounted for by saying they are governed by an arrow of time .  It is not known 
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what an arrow of time is, what it has to do with the rest of physics, or whether any of the 
above arrows of time have anything to do with each other. 
 It has been shown herein that entropy increase in thermodynamic systems is 
produced by the interaction of vacuum radiation with matter.  This interaction is time 
reversible.  However, we can go back a step and ask how vacuum radiation is produced.  
Whether an arrow of time is ultimately involved in entropy increase depends on the answer 
to this question, as we will see. 
 In examining this issue, let us start with a classical (SED) analysis.  Puthoff [16] has 
shown that if vacuum radiation with its frequency-cubed spectrum once exists, then random 
interactions with matter in which radiation is absorbed and matter accelerates and reradiates 
maintain this frequency-cubed spectrum indefinitely.  From this perspective, the random 
nature of the interaction of vacuum radiation with any given particle is caused by the 
random distribution in position and momentum of other particles the radiation previously 
interacted with.  All interactions are time-reversible, and it is not necessary to invoke an 
"arrow of time" to explain entropy increase in thermodynamic systems. 
 In quantum mechanics photons exist in quantized units of energy νh .  However, 
the average energy per photon of vacuum radiation is νh  1/2 .  For that reason it is 
commonplace to explain the average energy by supposing that photons spontaneously and 
causelessly arise out of the vacuum, exist for the time allotted by the uncertainty principle, 
and then annihilate themselves back into the vacuum.  In this scenario information 
describing the state of the newly created vacuum photon arises from nothing, the photon 
interacts with matter and modifies the information describing its state according to this 
interaction, and this modified information is then destroyed when the photon annihilates 
itself. 
 The dynamical information which is introduced in the creation of virtual photons is 
purely random.  However, the information which is removed is no longer random (or 
potentially is not because the virtual photons could have interacted with an ordered system).  
Thus the beginning and end points are inherently different, and an arrow of time is defined.  
According to this view, entropy increase is therefore ultimately associated with an arrow of 
time.[11] 
 On the other hand, it would seem that quite different views of the arising and 
disappearance of photons are possible.  The basic equations of QED and quantum field 
theory do not tell us how vacuum photons (or other virtual particles) arise.  And creation 
and annihilation operators, although they have evocative names, simply describe mappings 
from one state to another in Hilbert space, the same as any other operators.  The idea that 
vacuum photons arise spontaneously out of the vacuum is basically a pictorial device to 
account for the average energy per photon of νh  1/2 .  Alternatively, one can conceive 
that, comparably to the classical picture, vacuum photons arise and disappear through 
constructive and destructive phase interference of a large number of photons traveling in 
different directions.  To be consistent, one would have to view all other virtual particles as 
also arising and disappearing through constructive and destructive interference of quantum 
phase, perhaps through interaction with negative energy particles.  But the appearance and 



VACUUM RADIATION, ENTROPY AND TIME 497 

disappearance of virtual particles could perhaps occur in this way.  Another possibility is 
that the seemingly random appearance and disappearance of virtual particles comes about 
through interactions in the extra dimensions provided by string theory.  In each of these 
cases processes would be entirely time-reversible, and no arrow of time would be involved. 
 We can put this issue another way by asking:  Is the universe a continuous source of 
random dynamical information, creating virtual particles which can interact with matter and 
then return some of the previous dynamical information describing this matter to the 
vacuum?  Or does the universe merely transform dynamical information, with virtual 
particles arising and disappearing through a process such as the above?  At present there is 
no answer to these questions and, given quantum indeterminacy within the limits of the 
uncertainty principle, there may never be any conclusive answer. 
 
 
5.  Conclusion 
 
As vacuum radiation interacts with particles, it exchanges momentum with them.  The 
fractional change in momentum of a particle p / >p< 1/22

xδ  after one collision time, 
when multiplied by the lever arm of succeeding molecular interactions, becomes greater 
than one in only a few collision times.  Therefore, particle momentum is randomized during 
that time, and vacuum radiation can account for entropy increase in thermodynamic 
systems. 
 Vacuum radiation interacts with matter in a time-reversible process.  Therefore, 
whether entropy increase in thermodynamic systems should be viewed as ultimately 
connected with an arrow of time depends on whether the arising and disappearance of 
vacuum photons should be considered as a time-reversible or irreversible process.  Either 
possibility appears to be consistent with quantum mechanics. 
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