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Abstract.  A quantitative theory of the effects of mental influence outside the body, based on the idea that 
such influence consists of the ordering of random fluctuations within the limits of the uncertainty principle, 
is used to predict the effects of ordered air molecules on a tumbling cube.  If the influence can act 
throughout the first tumble of a cube, the pressure necessary to produce the deviation effects achieved by 
Forwald (1959, 1969) is estimated to be 1.45 x 10-5 dyne/cm2.  The number of molecules which must be 
simultaneously influenced to produce this pressure is 2.41 x 105. 
 The trajectory of a tumbling cube must have a minimum number of steps s0 in order for any 
substantial amount of magnification of a change in its trajectory to occur.  (A step is a tumble from one 
corner to another.)  When mental effects are produced by ordered molecules, s0 depends logarithmically on 
cube parameters (mass, length of a side, velocity), the pressure of the surrounding gas, and the number of 
molecules a person can simultaneously influence.  If a cube of mass M and half-length b is compared to a 
cube with mass M1 and half-length b1, and all other parameters are constant, then s0(M,b) - s0(M1,b1) = 
log2(Mb1

2/M1b2).  If different numbers of cubes n and n1 are influenced, with all other parameters constant, 
then s0(n) - s0(n1) = log2(n/n1).  If values for s0 are compared at pressures P and P1, with all other 
parameters constant, then s0(P) - s0(P1) = log2(P1/P). 
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1. Introduction 

In a previous paper (Burns, 2002b) it was shown that the endpoint of a tumbling cube is extremely sensitive 
to its initial angular orientation, in that a very small change in this orientation can produce a substantial 
sideways deviation Y∆ in endpoint of its trajectory.  It was pointed out that even if the action of mental 
influence is very small, it could use this magnifying effect to change the endpoint of dice thrown in games 
of chance, and thereby produce "lucky" results.  However, in order to keep the analysis very general, no 
specifications were made in the previous paper as to the size of the initial change.  In the present paper we 
now incorporate a proposal made elsewhere (Burns, 2002a) that mental influence acts within the limits of 
the uncertainty principle, and ask the implications of these combined ideas. 

Specifically, we will examine two possibilities.  First, we will suppose the cube shifts by the 
amount permitted by the uncertainty principle for its macroscopic mass.  The proposal that mental 
influence acts in this way was originally made by Walker (1975), and he concluded, using a rough 
dynamical analysis of the cube's trajectory, that the experimental results of Forwald (1959) could be 
explained by this hypothesis.  However, we will see herein, drawing on the more detailed dynamical 
analysis of Burns (2002b), that neither Forwald's results nor anecdotal results can be explained in this way.  
Therefore, if mental influence acts within the limits of the uncertainty principle, some other mechanism 
must be involved. 

In this regard, it has been shown (Burns, 2002a) that if a freely-traveling molecule shifts its 
momentum components within the limits of the uncertainty principle and these changes are then magnified 
by interaction with another molecule, its direction of travel can be changed to any direction in one mean 
free path.  In this way, if mental influence can make changes within the limits of the uncertainty principle, 
it can order the direction of travel of a molecule (Burns, 2002a).  So, second, this paper will explore the 
idea that mental influence acts on tumbling cubes (dice) by means of ordered air molecules, and we will 
compute the pressure and number of influenced molecules necessary to account for Forwald's (1959, 1969) 
results. 



The rest of this paper is organized in the following way.  In Section 2 we will review previous 
conclusions about quantum fluctuations in spatial and momentum coordinates, using the stochastic 
interpretation of quantum mechanics.  In Section 3 we will review previous conclusions about the dynamics 
of a tumbling cube. 

In Section 4 we will use the above results to compute the shift in angular orientation allowed to a 
cube of macroscopic mass M within the limits of the  uncertainty principle.  We will see that a cube would 
have to travel 68 cm to show any substantial sideways deviation from that angular shift, yet Forwald 
obtained results in less than 50 cm.  So the angular shift would have to be larger than allowed by the above 
condition to account for Forwald's results. 

In Section 5 we will find the number of air molecules NI which must be influenced to produce a 
pressure P∆ on a cube at the beginning of its trajectory, and in Section 6 we will relate P∆  to the 
minimum number of steps s0 a cube must travel to produce a substantial deviation Y∆  in the endpoint of 
its trajectory.  In Sections 7 and 8 we will estimate the minimum pressure P∆  and the minimum number of 
molecules NI which must be influenced to explain Forwald’s (1959, 1969) experimental results.  In 
Section 9 we will compare these numbers with analysis made elsewhere (Burns, 2002a) of the number of 
molecules which must be influenced to produce an action potential in the brain and to produce a detectible 
signal in a low-noise microphone. 

In Sections 10, 11 and 12 we will find the dependence of the deviation Y∆  in endpoint of the 
trajectory on cube parameters, such as size, mass, and number of cubes simultaneously affected, and find 
that the deviation depends on these logarithmically.  This logarithmic dependence could account for the 
seeming independence of results on these parameters which is reported in psychokinesis (PK) experiments 
(Stanford, 1977). 

Finally, a summary of results is provided in Section 13. 

2. Quantum Fluctuations and the Uncertainty Principle 

According to the stochastic interpretation of quantum mechanics (Chebotarev, 2000; de la Peña & Cetto, 
1996; Jammer, 1974), all particles and objects are subject to quantum fluctuations within the limits of the 
uncertainty principle, i.e., root mean square values of spatial and momentum coordinates are limited by 

    ,2/h=xpxδδ       (1) 

where h  is Planck’s constant divided by 2 π .  Individual root mean square values are given by 
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where t is the time and m is the mass of the particle or object (Burns, 2002a).  Identical limits can be 
derived by assuming that a root mean square change in coordinate produces the same change in the action 
integral, regardless of which coordinate is shifted (Burns, 1998). 

We further note that the fractional change on each momentum component, ipδ /p, where p is the 
total momentum, and the fractional change in energy E are proportional to t-1/2 (Burns, 1998).  So energy 
and momentum are conserved when t is large. 

It has been proposed in a previous paper (Burns, 2002a) that mental influence can act by ordering 
quantum fluctuations, with the maximum change in each coordinate being the same as the above root mean 
square variation.  It was further proposed that mental influence can act to select the most favorable change 
within these limits to produce the desired effect. 



3. Dynamics of the Tumbling Cube 

It was shown in a previous analysis (Burns, 2002b) that for a cube traveling forward in the x direction, a 
small shift θ∆  in its initial angle of orientation θ  will produce an average shift Y∆  in the endpoint of the 
trajectory, with relationships between θ∆ and Y∆ as follows. 
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where a is the average sideways step length during each tumble, s is the total number of steps, and s0 is the 
minimum number of steps the cube must travel to show any substantial magnification of the shift θ∆ .  (A 
step is a tumble from one corner to another.)  If θ∆ increases in an ongoing process which is longer than 

cubeτ , then θ∆  is evaluated as θ∆ ( cubeτ ).  (In a more exact formulation, the term θ∆ ( cubeτ ) would be 
multiplied by a factor near unity which depends on the details of the time dependence of the mental 
influence on the cube.  However, since we always take the log of this term, the factor near unity can be 
omitted.) 

We should note that a cube can travel forward by either tumbling (rotating about successive 
corners) or bouncing (spending most of its time airborne).  Equations (4) and (5) and associated discussion 
above apply to both tumbling and bouncing (Burns, 2002b).  Most of the rest of the paper will pertain to 
tumbling cubes, but we will sometimes refer back to the bouncing case. 

We would like to know the time cubeτ  for one step.  We have seen elsewhere (Burns, 2002b) that 
for a tumbling cube this quantity has a simple relationship to the cube parameters when a term ζ > 1, 
where 
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b is the half-length of the cube (i.e., the length of a side is 2b), u is the average forward velocity, and i is the 
angle of inclination of the surface the cube travels on.  Typically cubes which acquire their velocity by 
tumbling down a ramp, as might be done in a PK experiment, fulfill this condition over much of their 
trajectories (Burns, 2002b).  When ζ > 1, 
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We will also need another relationship which holds when ζ > 1, 
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where X is the distance of forward travel. 

4. Shifting a Cube of Mass M Within the Limits of the Uncertainty Principle 

As noted earlier, Walker (1975) proposed that mental influence acts within the limits of the uncertainty 
principle and that it acts to affect a traveling cube by shifting its initial angular orientation, with the effect 
of this shift being magnified by the subsequent trajectory of the cube.  He further proposed that the 
magnitude of the angular shift was the amount allowed by the uncertainty principle for the cube's 



macroscopic mass.  (He did not consider the possibility that ordered air molecules could strike the cube and 
produce an angular shift.)  Using a somewhat rough dynamical analysis, Walker concluded that such a shift 
could account for the deviation in Forwald's (1959) experiments with traveling cubes.  Let us now 
recompute the deviation using the present, more detailed analysis.  (For a comparison of Walker's analysis 
with the present one, see Appendix A.) 

The distance from a corner of the cube to the center of mass is 3b , so the angular shift is the 

change in spatial coordinate divided by 3b .  By equation (2) the angular shift θ∆ ( cubeτ ) which produces 

the final sideways deviation of the cube is given by 
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The cubes used in Forwald's (1959, 1969) experiments typically had a mass of 5 gm and a half-length of 
0.8 cm. 

We need an estimate of cubeτ  and therefore of the forward velocity u in the initial stages of the 

trajectory.  In these experiments the cubes dropped to a ramp from a small height, and then tumbled and 
bounced down the ramp to a horizontal surface.  Forwald set the forward velocity equal to 186 cm/sec at 
the bottom of the ramp (the latter computed from the height the cubes traveled down the ramp).  The 
derivations of equations (4) and (5) assume that the steps the cubes take are regular and similar in length 
(Burns, 2002b).  This was not strictly true of Forwald's cubes, and the above implies that we should 
estimate a typical value for u in the first part of the trajectory, rather than a specific value for the first 
bounce (which is unknown in any case).  This value must be somewhat less than the value at the bottom of 
the ramp, and we set u = 100 cm/sec.  The latter figure is not well known, but in computing s0 (equation 
(5)) we will be taking its log.  Therefore, s0 is not sensitive to this value. (Doubling or halving u will only 
change s0 by half a step.) 

As discussed in Burns (2002b, Section 7), ζ > 1 over most of the trajectory in these experiments, 

and we can use equations (7) and (8).  By equation (7) and the above cube parameters, cubeτ , the time for 

one tumble, equals 1.676x10-2 sec.  Therefore, θ∆ ( cubeτ ) = 1.356x10-15 radians.  By equation (5) the 
minimum number of steps s0 for which any substantial deviation Y∆  can be produced is 49.4.  Using 
equation (8) we find that the forward distance of travel X0 corresponding to s0 steps is 68.5 cm. 

Forwald's cubes typically traveled 15 cm down a ramp (McConnell & Forwald, 1968) plus 35 cm 
across a horizontal surface, for a total of 50 cm.  The deviation Y∆  was typically about 5 cm, large enough 
that his results would correspond to the range of forward travel where s was larger than s0.  But the distance 
X0 above is larger than 50 cm.  So a shift in angular orientation of the cube, to the extent permitted by the 
uncertainty principle for an object of its macroscopic mass, cannot account for Forwald's experimental 
results.  Furthermore, anecdotal accounts suggest that "lucky" results with dice can occur in much shorter 
distances than 50 cm. 

For these reasons, it appears that Walker's (1975) conclusion that mental intention acts via shifts in 
position of the size allowed by the uncertainty principle for macroscopic mass is not correct.  His 
dynamical analysis was simply too rough to show accurately the minimum distance of travel needed. 

However, Walker's results are important, in that he was the first to show that a traveling cube 
could exponentially magnify small changes at the beginning of a trajectory to produce substantial sideways  
deviation at its end, and that mental influence might be a very small effect which could produce such 
results through magnification.  He was also one of the first to propose that mental influence can act within 
the limits of the uncertainty principle. 

Since experimental results and anecdotal accounts cannot be explained in the above way, we must 
look further.  Molecules are much less massive than macroscopic objects, and by equation (2) they can be 
affected within the limits of the uncertainty principle much more readily.  So we will next inquire as to 
what effects can be produced by ordered air molecules which produce a small angular shift in cube position 
during the initial steps of the cube trajectory. 



5. The Pressure P∆  Produced by Ordered Molecules 

It has been shown elsewhere (Burns, 1998) that when the root mean square fluctuations in momentum of a 
traveling molecule are magnified by interaction with another molecule, its momentum components are 
redistributed to random values (with total momentum constant) after one mean free path of travel.  In this 
way quantum fluctuations can account for entropy increase in thermodynamic systems (Burns, 1998, 
2002c). 

As noted in Section 2, we are assuming that mental influence can act to select the most favorable 
change within the above root mean square limits.  In order for a molecule which has a component of 
motion directed toward a surface to produce a greater pressure than it originally would have, it is only 
necessary that momentum components be redistributed such that the molecule travels directly toward the 
surface.  Thus it is only necessary for a molecule to travel one mean free path, including an interaction at 
the end of the path to magnify the previous momentum changes, for mental influence to order its direction 
of travel to the desired direction (Burns, 2002a). 

Furthermore, as has been discussed elsewhere (Burns, 2002a), because the randomizing action of 
quantum fluctuations takes place continuously, each molecule to be ordered must be influenced over the 
entire mean free path.  Also, because an interaction at the end of the mean free path is necessary to magnify 
the momentum redistribution, the number of molecules which must be simultaneously influenced is twice 
the number being ordered at any given time. 

It has been shown elsewhere (Burns, 2002a) that the excess pressure P∆  produced by the ordered 
molecules is related to the number of molecules NI which must be simultaneously influenced by 
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where P is the pressure, σ the molecular cross section, and A the area the pressure acts on. 
Let us keep in mind that if several objects are influenced simultaneously, then A is the total cross-

sectional area of all the objects.  Thus if cubeA is the cross-sectional area of a single cube, A = n cubeA , where 
n is the number of cubes acted on. 

6. Effect of P∆ on a Tumbling Cube 

Let us now evaluate the effect of P∆  on a tumbling cube.  The cube travels forward by rotating on 
successive corners, and the action of gravity on the center of mass causes it to rotate sideways during each 
forward step, going to the right or left depending on whether the center of mass is to the right or left of the 
corner the cube is tumbling about.  The motion of the cube is deterministic and depends on its initial 
conditions; it is assumed that the particular trajectory the cube follows depends on the initial angle of 
orientation of the center of mass with respect to the corner.  The cube has mass M, forward velocity u and 
half-length b.  The cube takes s forward steps (tumbles about a corner) in its trajectory, and the center of 
mass undergoes an average sideways step of length a during each tumble.  The pressure P∆ of the ordered 
air molecules causes the cube to rotate by an angle θ∆ , which in turn causes the cube to follow a different 
trajectory than its original one and to have an average sideways deviation Y∆ due to mental influence at the 
end of s steps. 

In order to predict Y∆ , we need to know the angular deviation θ∆  produced by P∆ .  This 
pressure acts on a cross section A of the cube, which, because the cube is tumbling at a skew angle, is 

approximated by (2b)(2 3b ), where b is the half-length of a side (i.e., the length of a side is 2b).  It is 
assumed that P∆  acts uniformly across this area and in a direction orthogonal to the line from the corner to 
the center of mass, so the torque L is equivalent to a torque acting on the center of mass.  The distance from 

the corner to the center of mass is 3b , so L = P∆ A 3b  = I d2( θ∆ )/dt2, where I is the moment of inertia 
about a corner.  Noting that I = 4Mb2 (equations (7) and (8) in Burns (2002b)) and neglecting a factor 
γ ≈ 1), we have 
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We do not know how P∆  varies in time.  However, we suppose that 
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and call Iτ  the time constant for mental influence.  We now can evaluate equation (11), and find 
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Let us define r = Iτ / cubeτ .  We find 
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The term Iτ [1-r(1-e-1/r)] describes the dependence of θ∆ ( cubeτ ) on Iτ .  The factor in brackets equals 1 
when r = 0; it decreases thereafter, but remains near unity in the range r < 1.  As has been discussed in 
Burns (2002b, Section 2), the action of mental influence on a traveling cube is only important during the 
first few steps; after that it has little effect.  Therefore, the use of a time constant larger than cubeτ  would be 
ineffective, and we assume that r is not greater than 1.  We take the log of θ∆  in computing Y∆ , so we 
can set the factor in brackets to 1 with little error.  We now have  
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Evaluating cubeτ  in terms of cube parameters (equation (7)), we find(1) 
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Therefore, by equation (5) 
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7. Value of 0P∆  Needed to Produce an Effect Due to Mental Influence 

We have calculated elsewhere (Burns, 2002b, Section 7) the value of s0 corresponding to Forwald’s (1959, 
1969) experimental results.  It was noted therein that because Forwald did not know of the extreme ability 

                                                 
(1) If the cube were bouncing, rather than tumbling, cubeτ would stay in the equation as an independent 
parameter.  Also, in that case the moment of inertia about the center of mass, instead of about a corner, 
would be used. 



of the cube to magnify initial perturbations, he took no precautions to shield against air currents from 
breath or hand movements which might have affected results.  Therefore, even supposing that Forwald’s 
deviation results were produced by a small pressure 0P∆  acting at the beginning of the trajectory, we do 
not know whether that pressure was produced by molecules ordered by mental influence or by artifactual 
air currents.  However, we can compute the value of 0P∆  which corresponds to the above value of s0 and 

simply note that we do not know how 0P∆  was produced. 
The cubes used in Forwald's experiments typically had M = 5 gm and b = 0.8 cm, and as discussed 

in Section 4 we take the initial value for the forward velocity u to be 100 cm/sec.  These values would also 
be typical of cubes (dice) used in games of chance.  The value of s0 was estimated in Burns (2002b, 
Section 7) as about 29 ± 2 steps, corresponding to a distance of forward travel X0 of 40 ± 3 cm. 

We can now calculate 0P∆ .  We rewrite equation (17) as 
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Substituting the above values we find for s0 = 29, 0P∆ = 2.42x10-7/ Iτ  dyne/cm2.  The range of ± 2 steps 

corresponds to multiplying or dividing by 22 = 4, so the range for 0P∆  is 6.06x10-8/ Iτ  to 9.69x10-7/ Iτ  

dyne/cm2.  As discussed in the previous section, we take Iτ  < cubeτ , and using equation (7) we find cubeτ  = 

1.67x10-2 sec.  Setting Iτ  = cubeτ  gives a value for 0P∆  of 1.45x10-5 dyne/cm2, with a range of 3.62x10-6 to 
5.79x10-5 dyne/cm2. 

8. The Number of Molecules Which Must Be Simultaneously Influenced to Produce P∆  

If a person simultaneously acts on n tumbling cubes, then by equations (10) and (12), we can write 
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where cubeA is the cross-sectional area of a cube.  Each cube is rotating at a skew angle, and its average 

cross-sectional area is estimated as (2b)(2 3b ).  Thus at atmospheric pressure NI,0 = 4.33x109 nb2
0P∆ .(2) 

Forwald (1959, 1969) released six cubes in each experimental trial, and we assume he influenced 
each of them simultaneously.(3)  Using the above value for b, we find NI,0 = 1.662x1010

0P∆ .  If mental 

influence can act throughout the time cubeτ  for one tumble of a cube, the least amount of pressure 0P∆  is 
needed to produce Forwald’s results.  (It would be higher if mental influence lasted for a shorter time.)  

                                                 
(2) P = 1.103x106 dyne/cm2; σ , the average molecular cross section for air, equals 1.98x10-16 cm2. 

(3) It has been proposed that Forwald only influenced one cube out of the six each time (Walker, 1975).  
However, Forwald assumed that he affected all six cubes in computing his mean deviations, so if his values 
for the deviations are to be used, the same assumption must be made. 



Using this minimum pressure and its corresponding range, we find the minimum number of molecules 
needed to produce Forwald’s results is 2.41x105, with a range of 6.02x104 to 9.62x105. 

9. Comparison with Other Effects Involving Ordered Molecules 

It has been shown elsewhere (Burns, 2002a) that about 80 ordered molecules traveling at thermal energy in 
the brain can break an ionic or covalent chemical bond.  If opening a gate to a sodium channel in the 
neuronal membrane requires breaking five bonds, then about 400 molecules are needed for that.  Producing 
an action potential usually requires opening several gates, and initiating a physical action probably requires 
more than one action potential in the brain.  If we estimate that these factors multiply the number of 
molecules by 10, then about 4,000 ordered molecules are needed to initiate a physical action.  As was noted 
in Section 5, because each ordering is done via coordinate shifts along a mean free path, plus magnification 
of these shifts by interaction with another molecule at the end of the mean free path, twice as many 
molecules must be influenced as are ordered, with all of these influenced over the course of a mean free 
path.  Therefore, 8,000 molecules must be simultaneously influenced to produce a physical action. 

If mental influence acts by ordering molecules, one would expect that the number of molecules it 
can simultaneously influence outside the brain would be similar to, or less than, the number it can influence 
within it.  The number of molecules calculated in the last section to affect a tumbling cube is higher than 
the number to produce a single action potential by a factor of 30.  But mental influence may do more in the 
brain than produce a single action potential at a time, and in any case both numbers are rough estimates.  
From this perspective the numbers are reasonably compatible. 

The possibility of affecting a low-noise microphone by ordered molecules has also been analyzed 
(Burns, 2002a).  Such a microphone could detect -2.5 db, which corresponds to 1.5x10-4 dyne/cm2.  For a 
microphone area of 0.10 cm2 about 104 molecules would need to be simultaneously influenced to produce 
the required pressure.  This number is less than the minimum number of molecules necessary to explain the 
above results with the traveling cube, yet effects of mental influence are not detected by microphones.  
However, as was discussed in Burns (2002a), it may be that mental influence orders molecules in a very 
rough process and cannot produce a signal which varies coherently across a macroscopic surface.  This lack 
of coherence would mean that ordered molecules could not produce a signal detectible by a microphone. 

10. Dependence of s0 on Parameters Describing Tumbling Cubes 

All dependence of s0 on individual persons is in 0P∆  and Iτ .  Thus let us assume that 0P∆  and Iτ  are 
constant for a given person, and compare effects, using cubes with different parameters.  We will delineate 
set (1) as reference parameters.  Then 
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We note that the difference  in values of s0 is independent of the person acting. 
If the cubes gain their velocity from tumbling down a ramp, they will have the same average 

velocity (assuming that differing effects of friction on cubes made of different materials are not large).  In 
that case 
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As an example, suppose M = 8m1 and the lighter cube is hollow and larger, with b1 = 2b.  Then s – s0
(1) = 

log2(8) + 2log2(2) = 3 + 2 = 5. 



We should note, however, that values of Iτ  and 0P∆  for a given individual may vary somewhat 
for psychological reasons, such as mood (Broughton, 1991) and series position of experimental trials 
(Dunne et al., 1994), and this variation is apt to smear out a curve by several steps.  However, a difference 
in s0 for different parameters such as the above example may be detectible.  (For details on experimental 
procedures using tumbling cubes, see Burns (2002b).) 

11. The Use of Multiple Cubes 

Let us now inquire about the effect of varying the number of cubes a person simultaneously affects.  We 
will take NI,0 to be a constant characteristic of the person acting (subject to psychological variation).  (See 
Burns (2002a, Section 7) for further discussion of this point.)  Then by equation (10), 0P∆ A is a constant, 
where A is the total cross sectional area involved.  If a person simultaneously acts on n cubes, then A = 
n cubeA , where cubeA is the cross-sectional area of a single cube.  Therefore, 0P∆  is proportional to n-1.  If 
we compare s0 for n and n1 cubes, respectively, all with the same cube parameters, we have from equation 
(17) 
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As is the case when cube parameters are varied, the difference in s0 is independent of the person acting. 
If this relationship is tested experimentally, several factors must be kept in mind, however.  For 

one thing, as we have seen, most of the effect of mental influence is produced in the first few steps of each 
cube's trajectory.  Thus, even supposing that all cubes are released simultaneously, a person could influence 
one third, say, of the cubes on the first step, one third on the second step, and one third on the third step, 
without any great change in the deviation due to mental influence.  If more than three cubes are used in 
each comparison set, this would have no effect on the comparison predicted by the above formula.  
However, if a large number of cubes were compared to only one or two, the difference in s0 might not be as 
great as would be predicted above.  It would be better to use a minimum of six cubes as a reference number 
to compare with larger numbers of cubes. 

It is also important to release all the cubes at the same time, within as narrow limits as possible.  
Equation (7) tells us that for typical cube parameters (b = 0.8 cm, u = 100 cm/sec), cubeτ = 1.676x10-2 sec.  
To the extent that the total release time for all the cubes is greater than that, the person can act on cubes 
sequentially and substantially diminish the above difference in s0.  For instance, suppose a comparison is 
made of 64 (26) cubes and 6 (≈ 22.6) cubes.  If all 64 cubes can be released within 10-2 sec of each other 
(and similarly the 6 cubes are released within that time frame), the above equation predicts that s0 will 
change by 6.0 – 2.6 = 3.4 steps.  But if it took 1.07 sec to release the 64 cubes, she could act on all of them 
sequentially. 

12. Dependence of 0P∆  on Pressure 

The dependence of 0P∆  produced by mental influence on pressure P could be determined experimentally 
by measuring the deviation of a cube tumbling within a vacuum chamber.  For the same person acting on 
cubes of the same mass, size, and velocity, we have from equation (17) 
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where P1 is a reference pressure (atmospheric, say).  If NI,0 is a constant characteristic of the person acting, 
independent of pressure, then by equation (20) 
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Reduction of Effects of Mental Influence When Mean Free Path Becomes Greater Than the Dimension of 
the Vacuum Container.  When the mean free path λ becomes comparable to the size of the vacuum 
container, the gas molecules tend to strike the walls rather than interact with each other.  Although a wall 
can be considered perfectly reflecting on the average, individual gas molecules will be affected by minor 
deviations on an atomic scale and in effect interact with several molecules in the wall each time they hit it.  
If NI,0 is a constant characteristic of the person acting, then the total number of molecules which can be 
ordered is reduced and 0P∆  is thereby reduced.  Using the expression for λ (see equation A.1 in Burns 
(2002a) and relevant constants), we find that for a container with dimension L of one meter, this effect 
takes place in air at 20°C at a pressure of 6.32x10-7 atmospheres (= 4.80x10-4 torr). 

13. Summary and Discussion 

This paper combines the results of two previous papers and continues the exploration of the ideas therein.  
First, it has earlier been shown (Burns, 2002b) that a traveling cube can magnify a very small change in 
initial angle of orientation to produce a sideways deviation Y∆ at the end of the trajectory, according to the 
formula Y∆ = a(s-s0), where a is the average sideways step length, s the number of steps in the trajectory, 
and s0 the minimum number of steps necessary to produce any substantial effect.  Thus mental influence 
could produce a deviation at the end of the trajectory by exerting a small angular change at the beginning. 

The above paper did not make any assumption about the size of the angular shift, other than that it 
is small.  However, it has also been proposed (Burns, 2002a) that mental influence acts within the limits of 
the uncertainty principle.  The present paper incorporates this assumption and explores quantitatively two 
possibilities:  (a) the angular shift is produced when the cube, with its macroscopic mass, is shifted within 
the limits of the uncertainty principle, and (b) the angular shift is produced by the impact of ordered 
molecules.  (It has been shown by Burns (2002a) that the limits of the uncertainty principle permit ordering 
the direction of travel of a molecule in one mean free path.) 

If the shift in initial angle were the amount permitted by the macroscopic mass of the cube, then 
for a cube with parameters typical of Forwald's (1959, 1969) experiments and games of chance, s0 would 
equal 49 steps, corresponding to a forward distance of travel of 68 cm.  But results of mental influence are 
reported in shorter distances than that, both in Forwald's experiments and anecdotally.  It is concluded that 
if mental influence shifts the initial angle of the cube, it must do it some other way. 

Forwald's (1959, 1969) experimental results can be explained if the pressure P∆  from ordered 
molecules is at least 1.45x10-5 dyne/cm2, corresponding to at least 2.41x105 molecules simultaneously 
influenced. 

If mental effects are produced from ordered molecules, s0 has a logarithmic dependence on M/b2, 
where M is the mass and b the half-length of the cube.  If multiple cubes are affected simultaneously, s0 
will depend logarithmically on the number of cubes involved.  Also, s0 depends logarithmically on P-1, 
where P is the ambient pressure.  This logarithmic dependence on variables may explain why results in PK 
experiments seem to be independent of the various factors involved (Stanford, 1977). 

As we have seen in sample calculations, the number of molecules which must be simultaneously 
influenced to account for effects of mental influence is very large.  Yet persons who produce such effects 
have no conscious knowledge of controlling the trajectories of this large number of molecules.  Also, the 
time during which each molecule is affected is very short (10-9 sec at atmospheric pressure), whereas 
conscious experience of time duration extends down only to a few tenths of a second.  Thus if psi occurs at 
the molecular level, as is suggested herein, it must be carried out at a deeply unconscious level. 

The latter possibility is compatible with the view that all people directly involved in an 
experiment -- experimenter, person assigned to produce an effect, and others -- are linked at an unconscious 
level, and that results due to mental influence can be due to any or all of them.  (This possibility is often 
referred to as the experimenter effect.)  As noted by Palmer (1997), this view is supported by a variety of 
experimental data.  For instance, when a large group of people have intense involvement in an experience, 
fieldREG data show a non-random effect (Nelson et al., 1998; Radin, 1997).  In a similar vein, if a number 



of people have a strong preference for good weather on a certain day, the microclimate in that area can be 
affected (Nelson, 1997). 

In summary, this paper has continued an exploration of the proposal that mental influence acts by 
ordering quantum fluctuations within the limits of the uncertainty principle, and the finding previously 
made that molecules can thereby be ordered in their direction of travel in one mean free path.  We have 
seen herein that the deviation of a traveling cube comparable to the results reported by Forwald (1959, 
1969) can be accounted for by the impact of ≈ 105 ordered molecules at the beginning of the trajectory, but 
not by a shift of the cube by the small amount permitted by the uncertainty principle for its macroscopic 
mass.  We have seen herein that the dependence of the deviation of a traveling cube on macroscopic 
parameters is logarithmic, which is consistent with parapsychology experiments showing the seeming 
independence of PK on macroscopic variables.  And we have noted herein that if mental influence acts by 
ordering a large number of molecules, a process individuals are quite unaware of, it must act at a deeply 
unconscious level. 

Appendix A 

Comparison of This Theory with Walker's Analysis 

The context of Walker's theory is very different from that of the present theory.  Walker's (1975, 1979) 
theory holds that consciousness collapses the quantum mechanical wave function, and that PK can act to 
select the most favorable branch of the wave function upon collapse, whereas the present theory holds that 
PK occurs as a result of ordering quantum mechanical fluctuations. 

The theories are similar in that both hold that PK takes place through coordinate shifts which 
occur within the limits of the uncertainty principle.  But because the uncertainty principle only limits the 
product of changes in coordinates, a further condition must be made in each theory to limit the change in 
spatial and momentum coordinates individually.  Wave function collapse is presumably instantaneous, 
whereas in this theory root mean square changes in coordinates depend on the time elapsed (equations (2) 
and (3)).  Walker developed his limit on the change in initial angle of a cube in an ad hoc intuitive way, 
rather than using any extensive analysis.  However, as we will see below, when the variables he used to 
express it are transformed to the variables used herein, his expression turns out to be the same as the one 
used herein, to within a constant factor near unity. 

According to equation (9) of the present theory, the shift θ∆ ( cubeτ ) in initial angle of the cube is 
given by 
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In Walker’s expression for PK deviation of the cube, the comparable term is called 1δθ .  By his equation 

(78), neglecting factors near unity, 1δθ = [h / 0ωI ]1/2, where I is the moment of inertia about the center of 

mass, which is approximately equal to Mb2.  0ω , the angular velocity about the y axis, is called φω  in the 

analysis of Burns (2002b), and by equation (9) of that analysis cubeτωφ = π /3.(4)  Therefore, 1δθ = 

(3/π )1/2[h cubeτ /Mb2]1/2 .  So Walker’s expression differs from that of the present theory only by a constant 
factor near unity.  Because the log of θ∆  is always used in predicting the final sideways deviation of the 
cube, this constant factor is not important and the terms are basically identical.  (Walker used the natural 
log, whereas this theory uses log to the base 2, but logs taken using these different bases also differ only by 
a constant factor near unity.) 

                                                 
(4) We are setting a factor ζ > 1 in that analysis. 



Predictions about the traveling cube, by both Walker's theory and the present one, depend on only 
two things:  the value of θ∆ , essentially the same in each theory, and the dynamical analysis of its motion.  
Walker's dynamical analysis was somewhat rough.  For instance, he made the simplifying assumption that 
the distance traveled sideways is the same as the distance traveled forward during each tumble.  (The 
analysis of Burns (2002b, Sections 3.3, 6 & 7) shows that this ratio is typically 0.25 for a tumbling cube 
and perhaps 0.50 for a bouncing cube.) 

Both models used a set of discrete trajectories to analyze the effect of PK on the cube.  Indeed, the 
present author took this idea from Walker's paper and found it very convenient.  However, Walker's 
analysis of the magnifying effect of the cube trajectories was done by a different method than the present 
theory and was intertwined with the rest of his dynamical analysis, whereas in this theory they are done 
separately.  For this reason, it is difficult to make any overall comparison between his analysis and the 
present one. 

Walker concluded that Forwald's (1959) data could be accounted for by a shift in the initial angle 
of the cube itself.  However, as we saw in Section 4 herein, the more extensive dynamical analysis of Burns 
(2002b) shows that the minimum distance the cube must travel in order for a sideways deviation to be 
produced in this way is substantially longer than the distances Forwald's cubes traveled and therefore 
cannot account for Forwald's results.  However, Walker's work is important because he was the first to 
show that mental influence could be an extremely small effect which could magnified to produce 
macroscopic changes. 
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